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The excessive reliance on chemical fertilisers in modern agriculture has led to adverse environmental impacts,
including soil degradation, groundwater contamination, and biodiversity loss. Sustainable alternatives are
urgently needed, with biofertilizers offering a promising solution. In this context, Bacillus species, widely
recognised as plant growth-promoting rhizobacteria (PGPR), has gained considerable attention for agricultural
applications. Bacillus spp. produce a variety of compounds that enhance plant growth and act as biocontrol
agents against plant pathogens, positioning them as valuable assets in both agricultural and biotechnological
fields. These bacteria exhibit antagonistic properties through the secretion of extracellular metabolites, such
as antibiotics, cell wall-degrading enzymes, and siderophores, which inhibit pathogen development.
Additionally, Bacillus spp. trigger systemic resistance in plants, bolstering defence mechanisms against
various pathogens. Beyond their role in biocontrol, Bacillus spp. support plant growth by facilitating
nitrogen fixation, phosphate solubilisation, phytohormone production, and stress tolerance. They also
contribute to rhizoremediation and carbon sequestration, promoting soil health and resilience. This
multifaceted functionality underscores the significance of Bacillus spp. as biofertilizers, highlighting their
potential to foster sustainable agricultural practices and ecological stability.
Key words: Bacillus, Biocontrol, Carbon sequestration, Induced systemic resistance, Nutrient use efficiency,
Rhizoremediation.
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ABSTRACT

Introduction
The genus Bacillus, established by Cohn in 1872,

encompasses over 200 recognised species and subspecies
within the phylum Firmicutes. Members of this genus
are characterised as rod-shaped, Gram-positive, catalase-
positive bacteria that can be either aerobic or facultatively
anaerobic (Logan et al., 2009). A defining feature of
Bacillus species is their ability to form endospores, which
confers significant resilience to extreme environmental
conditions, enabling them to persist across a wide range
of habitats, particularly in soil. Bacillus species are
dominant members of soil and rhizosphere microbial
communities, making up as much as 95% of the Gram-
positive population in these environments (Prashar et al.,
2013). Additionally, they rank among the most common

endophytic bacteria, establishing symbiotic relationships
with plants (De Silva et al., 2019). These attributes
underscore the ecological versatility and adaptability of
Bacillus species, contributing to their prominence and
utility in agricultural and environmental applications.

The Bacillus group is highly diverse, comprising both
non-pathogenic and pathogenic species, with the majority
of Bacillus species and their derivatives considered safe
for environmental applications (Bhattacharyya et al.,
2016). They are particularly favoured in commercial
applications due to their rapid growth in diverse media,
ability to secrete multiple bioactive compounds, and
formation of highly resistant endospores (Wu et al., 2015).
These traits allow Bacillus spp. to maintain long-term
viability, be easily formulated, and be stored effectively
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(Czaja et al., 2015). In soil and plant rhizosphere
environments, Bacillus populations can persist without
negatively impacting other bacterial communities, making
them ideal candidates for sustainable agricultural use
(Radhakrishnan et al., 2017).

Commercial products containing beneficial strains
such as Bacillus subtilis, Bacillus amyloliquefaciens,
Bacillus pumilus, Bacillus licheniformis, Bacillus
megaterium, Bacillus velezensis, Bacillus cereus, and
Bacillus thuringiensis are distributed globally (Mazzola
et al., 2017). These Bacillus species are among the most
extensively studied biocontrol agents, commonly used as
biopesticides to suppress plant pathogens through
mechanisms of antagonism and competition. Pathogen
inhibition by Bacillus spp. Involves several mechanisms,
including competition for nutrients and space, production
of antibiotics, hydrolytic enzymes, siderophores, and the
induction of systemic resistance in plants. This array of
beneficial traits underscores the value of Bacillus spp.
as robust biocontrol agents in sustainable agriculture.

Role of Bacillus species
Bio Control of Pathogens

The formation of biofilms by Bacillus species around
plant root surfaces enables the secretion of various
bioactive compounds, including surfactin, iturin,
macrolactin, bacillomycin, and fengycin. These
compounds are instrumental in suppressing pathogenic
bacterial populations, thereby mitigating the incidence of
plant diseases (Chen et al., 2013; Huang et al., 2014;
Elshakh et al., 2016; Hinarejos et al., 2016). Moreover,
treatment with Bacillus spp. enhances the expression of
key antioxidant genes and defence-related enzymes, such
as peroxidase (POD), phenylalanine ammonia-lyase
(PAL), superoxide dismutase (SOD), catalase (CAT),
and polyphenol oxidase (PPO) (Narendra-Babu et al.,
2015; Yang et al., 2015). Studies by Chowdappa et al.,
(2013) and Kang et al., (2015) have demonstrated that
Bacillus-treated plants exhibit elevated levels of growth-
promoting hormones, including indole-3-acetic acid (IAA)
and gibberellic acid (GA), along with increased salicylic
acid (SA) levels, whereas jasmonic acid (JA) and abscisic
acid (ABA) levels tend to decrease in plants challenged
by pathogens.

Bacillus subtilis, a Gram-positive bacterium known
for forming biofilms on inert surfaces, possesses numerous
transcriptional factors that regulate its adaptive functions
(Stanley et al., 2003). Different strains of B. subtilis
produce various hydrolytic enzymes, such as cellulases,
proteases, and -glucanases. Research by Cazorla et al.,
(2007) suggests that B. subtilis, through the secretion of

antibiotics and hydrolytic enzymes, can modify its
environment in a manner advantageous to its survival
while also forming resistant endospores to endure
unfavourable conditions.
Induction of Systemic Resistance (ISR)

Bacillus species are recognised for their ability to
induce systemic resistance (ISR) in host plants, thereby
strengthening their defence mechanisms against a wide
range of pathogens. The activation of ISR by Bacillus
subtilis stimulates the production of jasmonic acid (JA),
ethylene, and the NPR1 regulatory gene in plants, crucial
components in plant immunity (Garcia-Gutierrez et al.,
2013). For instance, application of the B. subtilis strain
AUBS1 has been shown to enhance phenylalanine
ammonia-lyase (PAL) and peroxidase (POD) levels and
promote new protein synthesis in rice leaves (Jayaraj et
al., 2004).

In tomato seedlings, B. subtilis treatment increases
the activity of defence enzymes, such as peroxidase
(POD), polyphenol oxidase (PPO), and superoxide
dismutase (SOD), alongside the production of various
hormones, collectively contributing to ISR against early
and late blight (Chowdappa et al., 2013). The B. subtilis
strain Sb4-23 has been found to facilitate ISR through
indirect pathways rather than direct interaction with
pathogens (Wang et al., 2018). Additionally, another strain
of B. subtilis has been reported to reduce root-knot
nematode activity in tomato plants by activating ISR,
further highlighting the broad-spectrum protective effects
of ISR activation by Bacillus spp. (Adam et al., 2014).
Nutrient Solubilization

Many essential nutrients and trace elements required
by plants, such as nitrogen, phosphorus, and iron, exist in
forms within the soil that are not directly accessible to
plants. Rhizobacteria play a critical role in transforming
or mobilising these elements, making them available for
plant uptake (Hayat et al., 2010). Phosphorus (P),
alongside nitrogen, is crucial for plant growth; however,
over 80% of soil phosphorus remains in an inaccessible,
fixed form due to adsorption, precipitation, or
transformation. Bacillus subtilis, part of the group known
as Phosphate Solubilising Microorganisms (PSM),
effectively solubilises both organic and inorganic
phosphate forms, enhancing phosphorus availability to
plants (Saeid et al., 2018). The solubilisation process
involves Bacillus spp. producing organic and inorganic
acids, siderophores, protons, hydroxyl ions, and CO‚ which
either chelate cations or lower the pH, liberating
phosphorus from its bound state. Additionally, enzymes
such as phosphatases, phytases, and phospholipases are
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secreted by these bacteria to mineralise organic
phosphates.

Furthermore, plants depend on microbial symbionts
for atmospheric nitrogen fixation, as they cannot directly
absorb nitrogen from the air. Bacillus subtilis contributes
to nitrogen fixation and promotes nodulation by facilitating
colonisation by native symbiotic rhizobacteria (Elkoca et
al., 2007). Additionally, B. subtilis enhances iron
acquisition in plants by acidifying the rhizosphere, which
mobilises iron, and by stimulating the upregulation of plant
iron acquisition genes (Freitas et al., 2015; Zhang et al.,
2009).
Enhanced Nutrient use Efficiency

The extensive use of nitrogen fertilizers poses a
serious threat to the global nitrogen cycle within soil
ecosystems. Between 1961 and 2007, while both nitrogen
fertilizer consumption and crop production increased
significantly, nitrogen use efficiency remained at only 40%
(Stevens et al., 2019). The intensive application of
synthetic nitrogen fertilizers in agriculture has become a
primary source of non-point pollution due to nitrogen
losses. Biofertilizers, especially those containing Bacillus
subtilis, have emerged as promising alternatives, though
the mechanisms by which they mitigate non-point source
pollution are not fully elucidated. Notably, replacing 50%
of urea with a B. subtilis-based biofertilizer reduced
nitrogen loss from soils by 54%, improved nitrogen use
efficiency by 11.2%, and increased crop yield by 5.0%.

The application of B. subtilis biofertilizers was
associated with decreased abundance of the amoA gene,
an indicator of nitrification, and increased levels of
denitrification genes (narG, nirS, nirK, and nosZ), reflecting
reduced NO3

-N accumulation and a substantial decrease
in nitrogen runoff and leaching. Furthermore, the
biofertilizer decreased the presence of the nitrogen-fixing
gene nifH, while supporting the growth of microbial groups
like Bacteroidetes and Chloroflexi, known for their roles
in organic matter degradation. Overall, B. subtilis
biofertilizers effectively modulate microbial nitrogen
cycling processes, thus minimizing nitrogen losses from
agricultural systems.

In terms of managing nitrogen-polluted wastewater,
Bacillus species have been effectively employed in
various regions globally (Hlordzi et al., 2020). While
conventional nitrate removal methods, such as reverse
osmosis, electrochemical reduction, ion exchange, and
electrodialysis, are often expensive, alternative
approaches using bioaugmentation with microbial agents,
especially in combination with bio-electrochemical
systems, offer a cost-effective and efficient solution for

accelerating denitrification (Rahimi et al., 2020).
  Improves Drought and Stress tolerance in

Plants
Plants colonised by Bacillus species exhibit improved

water uptake, which plays a crucial role in protecting
against drought-induced stress (Marulanda et al., 2009).
Drought conditions often limit the uptake of essential
macronutrients, such as nitrogen (N), phosphorus (P),
and potassium (K), but treatments with Bacillus spp.
have been shown to increase the availability and
absorption of these nutrients in drought-stressed plants
(Barnawal et al., 2013). This enhancement results from
bacterial enzymes that facilitate the accumulation of
bioavailable nutrient forms in both the soil and plants
(Kang et al., 2015a; Kuan et al., 2016). Additionally,
under drought stress, Bacillus spp. promote higher
concentrations of sucrose and fructose in plants, aiding
drought adaptation by stimulating root growth (Gagne-
Bourque et al., 2016). While drought conditions typically
inhibit pigment synthesis and reduce photosynthesis,
Bacillus treatments have been found to increase the levels
of chlorophylls a and b and carotenoids, which in turn
enhance photosynthetic activity in stressed plants
(Barnawal et al., 2013; Hashem et al., 2015).

Bacillus spp. also produce hormones and ACC
deaminase, regulating plant growth by elevating levels of
stress-related hormones such as salicylic acid (SA),
jasmonic acid (JA), and abscisic acid (ABA), while
reducing ethylene levels via ACC deaminase activity
(Barnawal et al., 2013; Castillo et al., 2013). The increase
in ABA levels contributes to drought tolerance by
activating antioxidant enzymes and reducing water loss
through stomatal closure (Lu et al., 2009; Zhu et al.,
2011).
Improve Plant Health in Saline Soil

Climate change has disrupted the consistency of
annual rainfall, leading to altered precipitation patterns.
This change has exacerbated the spread of soil salinity
worldwide, particularly in agricultural lands where
inadequate rainfall, high water evaporation rates, and
improper irrigation practices prevail (Al-Karaki, 2006).
Soil salinity increases soil water potential, making it more
challenging for plants to absorb water and essential
nutrients through their roots (Porcel et al., 2012).
Introducing microbial inoculants with Bacillus species
can mitigate salt stress effects on plants, offering an eco-
friendly solution for sustainable agriculture
(Radhakrishnan et al., 2014; Hashem et al., 2015, 2016a,
b).

For instance, Bacillus licheniformis A2, which



possesses various plant growth-promoting traits—
including phosphate solubilisation and the production of
ammonia, indole-3-acetic acid (IAA), and siderophores—
counteracts salt stress in plants, thereby enhancing growth
under stressful conditions in crops like peanuts (Goswami
et al., 2014). Bacillus species help reduce the adverse
effects of salinity by lowering lipid peroxidation levels
(Han et al., 2014). Hashem et al., (2015) showed that
Bacillus subtilis boosted the synthesis of essential lipids,
such as oleic, linoleic, and linolenic acids, and phospholipids
in salt-stressed plants, which may reduce lipid
peroxidation and oxidative stress. Antioxidant enzyme
regulation further aids plants in managing reactive oxygen
species (ROS); in plants treated with Bacillus, enzymes
like ascorbate peroxidase (APX) and superoxide
dismutase (SOD) show decreased activity, while nitrate
reductase (NR), catalase (CAT), and peroxidase (POD)
activities are increased (Jha and Subramanian, 2012,
2015). This adaptive response promotes resilience against
oxidative stress under saline conditions.
Rhizoremediation

Agricultural soils contaminated with trace metals
from industrial effluents and agrochemicals pose
significant risks to the ecological food chain, adversely
affecting crop growth and altering soil microbial
communities (Hu et al., 2009; Ashraf et al., 2017). Metals
such as copper (Cu), manganese (Mn), and zinc (Zn)
are notable pollutants in both soil and water, exhibiting
resistance to degradation into harmless substances (Ma
et al., 2009; Arthur et al., 2012). While chelating agents
are sometimes utilised to mitigate metal toxicity, they can
also pose risks to living organisms (Tandy et al., 2006).
In contrast, microorganisms have the potential to
solubilise or transform toxic metals into less harmful forms,
offering a beneficial approach for heavy metal
phytoremediation (Bosecker, 1997; Kang et al., 2015).
These bacteria enhance plant growth under metal stress
by improving water uptake and reducing electrolyte
leakage, thereby alleviating cadmium (Cd) toxicity
(Ahmad et al., 2014).

Bacillus species, in particular, help mitigate the
effects of metal stress by decreasing lipid peroxidation
and reducing the activity of superoxide dismutase (SOD),
while simultaneously increasing levels of amylase and
protease to promote growth in metal-contaminated soils
(Pandey et al., 2013). They also enhance plant tolerance
to zinc (Zn) and copper (Cu) stress by boosting the activity
of reactive oxygen species (ROS) scavenging enzymes,
including peroxidase (POD), catalase (CAT), ascorbate
peroxidase (APX), and dehydroascorbate reductase
(DHAR) (Gururani et al., 2013; Wang et al., 2013).

Moreover, chromium (Cr) stress can reduce acid
phosphatase activity in plants, but treatments with
beneficial bacteria have been shown to increase this
enzyme’s activity, helping plants better cope with metal-
induced stress (Riaz et al., 2010). By enhancing the
resilience of plants to heavy metal contamination, Bacillus
species play a crucial role in promoting sustainable
agricultural practices and improving soil health.
Carbon Sequestration

Soil carbon sequestration currently ranges between
3.5 and 5.2 gigatons per year, but this rate needs to be
increased to effectively address rising CO2 levels that
contribute to global warming (Duran et al., 2021). Soil
microbiota, supported by root exudates, play a key role in
controlling carbon influx and efflux in the rhizosphere.
The introduction of microorganisms derived from
biological soil crusts to drylands can enhance the soil’s
carbon absorption capacity, increasing it from 0.232 to
0.294 g/m²/day (Kheirfam, 2020).

Bacillus subtilis, a widely used plant growth-
promoting bacterium (PGPB) in agriculture, shows
significant potential for carbon sequestration under
various growth conditions. Numerous studies have
explored the carbon sequestration capabilities of Bacillus.
One promising approach involves utilising carbonic
anhydrase (CA)-based enzymatic technology for carbon
fixation and bioremediation (Effendi & Ng, 2019).
Immobilised forms of CA have proven to be efficient
and suitable for industrial applications; for instance, CA
derived from B. subtilis VSG4 can convert CO2 into
calcium carbonate (CaCO3) when immobilised (Oviya
et al., 2012).

Furthermore, Bacillus sp. SS105, isolated from a
free-air CO2-enriched (FACE) environment, can convert
CO2 into calcite due to the presence of beta- and gamma-
carbonic anhydrase genes. The efficiency of CO2
sequestration and calcite formation was demonstrated
through assays of RUBISCO and CA enzymes
(Maheshwari et al., 2019). This sequestration efficiency
contributes to maintaining various physiological and
biological functions.

In addition to carbon sequestration, Bacillus species
produce lipopeptide-type biosurfactants, making
simultaneous carbon sequestration and biosurfactant
production beneficial for both commercial and agricultural
applications (Maheshwari et al., 2017). Gaseous CO2
and sodium bicarbonate (NaHCO3) have been effectively
utilised as substrates for biosurfactant production by
Bacillus sp. ISTS2 (Sundaram & Thakur, 2015). This
dual functionality highlights the potential of Bacillus species
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as a sustainable strategy for enhancing soil health and
addressing climate change challenges.
Future perspectives

Future research should prioritize exploring antibiotic
resistance genes within Bacillus species, emphasizing
their transfer mechanisms, interactions with other
microorganisms, and potential effects on soil microbial
diversity. Understanding these factors is crucial for
mitigating the risks associated with antibiotic resistance
in agricultural contexts. To support sustainable agriculture,
developing microbial consortia that include Bacillus
species capable of enhancing crop productivity without
negatively impacting the rhizosphere’s microbial
ecosystem is essential. Effective applications of Bacillus
and other Plant Growth-Promoting Bacteria (PGPB) can
be pursued through several strategies, such as targeting
seed endophytic microbiomes, selecting plant varieties
compatible with microbial inoculants, and utilizing
microbial engineering techniques to maintain beneficial
microbiota across generations. Additionally, implementing
soil amendments and exploring plant genetic modifications
present promising strategies for preserving soil health,
thereby advancing sustainable farming practices. By
integrating these approaches, future research can reduce
reliance on chemical inputs and enhance the overall
resilience of agricultural systems.

Conclusion
Bacillus species present an eco-friendly approach

to enhancing crop production through mechanisms such
as biological control, biofertilization, and biostimulation.
While the potential of Bacillus spp. to reduce disease
incidence and boost crop yields is well established, their
widespread application remains limited due to inconsistent
performance across various conditions. The effectiveness
of these bacteria in providing beneficial effects is
significantly influenced by their interactions with plants
or pathogens, as well as environmental factors. Given
the substantial economic and ecological value of Bacillus
spp., it is essential to broaden the range of practically
important species and develop advanced methods for their
rapid, comprehensive study and effective utilization.
Integrating Bacillus spp. into agricultural systems
represents a promising strategy for sustainable farming
that aligns with the United Nations Sustainable
Development Goals, thereby contributing to global food
security.
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have no conflict of interest.
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